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Abstract

This paper presents a method for identifying systems through their input-output behavior and the Genetic
Algorithm. The advantages of this technique are, first, it is not dependent on the deterministic or stochastic
nature of the systems and, second, the globally optimized models for the original systems can be identified
without the need of a differentiable measure function or linearly separable parameters. The results are
compared to similar results from Least Squares identification methods.

1. Introduction

The problem of determining a mathematical model for an unknown system by observing its input-output
data pairs is generally referred to as system identification [1]. System identification is performed by
adjusting parameters within a given model until its output, for a particular input, coincides as well as
possible with the measured output of the system being identified for the same input. After a system has
been identified, its output can then be predicted for a given input to the system. This, of course, is usually
the primary goal of the system identification problem.

In general, system identification involves two steps: structure realization and parameter identification. In
the first step, a priori knowledge is used to determine a class of models to which the target system may
belong. For example, the target system might be assumed to be causal, time-invariant, etc. If there isno a
priori knowledge available, then the structure realization might be done by a trial and error method [2].
The main focus in system identification is on the parameter identification process.
Consider a mapping,

GU->V
where G is a system that maps a set of inputs U to a set of outputs V and for which an approximation is
desired.

Let G be an approximation for G, where our interest is only in external approximation, that is, where the
approximation objectives are focused on the behavior of the approximation error

e(t) = (Gu)(t) - (Gu)(?) (1)

Such approximation objectives are called external approximation criteria [3].
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Figure 1: a block diagram for system identification, G isa target system, G is estimated system.

The approximation criterion allows us to determine how good the estimate of the system is.



For example, one important external approximation criterion is the uniform approximation criterion which
states that the absolute approximation error |e(t)] must be uniformly less than a prescribed £ [3].

Several techniques have been used to minimize the approximation error, e(t), and most are based on
statistical or gradient descent methods. Statistical methods require knowledge of the statistical properties
of the systems as well as of the input and output signals. Such information is sometimes not available.
Gradient descent methods are local search techniques, which require a smooth search space. Even when
the search space is smooth, these techniques are often unable to locate the global optimum because of the
presence of multimodal error surfaces and/or because of the problem of dimensionality when identifying
high order systems. In this paper, we approach the problem of minimizing e(t) by using the Genetic
Algorithm. Advantages of the Genetic Algorithm are that it generally requires less knowledge of system
properties and statistical properties of the input-output signals, is a global search technique, and avoids the
problem of dimensionality.

2. Genetic Algorithm

The Genetic Algorithm (GA) is a two-step population-based process of random variation and selection [4].
In GA, a string of a certain data type, where the data type can be numeric, binary or a user-defined type
represents a solution. The string structure is called a chromosome. For example, in binary coding, each
parameter is coded using a binary string of 1bits whereby a parameter can take values lying in the interval
[0 2-1]. A linear mapping procedure is used to decode any unsigned integer from [0 2-1] to a specific
interval [Low,High]. For multiparameter optimization, the coded parameter values are concatenated to
form a large string, which then forms one member (chromosome) of a population as illustrated below:

a, a, «a, a, a; o a, o,
11010111/01110010/1111101j00011100/11111001/00111101{10010001{11001000

A coded string of eight parameters

The concept of a genetic algorithm is that a collection of potential solutions to a problem is created by
taking random numbers from a chosen distribution and then using crossover and mutation operators to
generate new solutions. A crossover operator is applied to a pair of solution strings (parents) by
exchanging a part of one string with another part of the other string to create two new solution strings
(children). A mutation operator operates on only one string (a parent) by negating one part of or the whole
string, thus creating a new string (a child). These two operators are illustrated below:

parent 10111111111111100000/{100001000|10001
parent 010000/001011111/1011111011100001111  10111111111111100000(1000010010001

childl 10111111111111100000/001011111{10001 10111111111111100000/0111101101110
child2 010000100001000[1011111011100001111

New children created by crossover operator A new child created by mutation operator

A selection criterion is now imposed to determine which solution should be kept and which should be
discarded. The selection sub-process goes through several steps as follows: first, each solution in the
collection is evaluated and scored based on a given evaluation criterion. Second, the potential solutions are
ranked based on fitness scores. From these rankings, the selection process chooses solutions to be
advanced to the next generation. To assign a fitness score to each string structure, the string is decoded into
its constituent parameters. The error signal obtained by using these parameters is used in calculating the
fitness measure for the string. There are several ways to define fitness score using the error signal.
However, the mean square value of the error signal over a rectangular window is often used as the fitness
score for the string [5]. This two-step process is then repeated until a stopping criterion is satisfied. The
stopping criteria might be a maximum number of generations that the evolving process will go through, or
it might be that the score of a potential solution must lie within a certain boundary. Figure (2) is a flow
chart of a general GA.
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3. Linear system identification
In this section, the GA is applied to the identification of a linear system. Here, we assume that the structure
of a system is in the form of an auto regressive (AR) and moving average (MA), and that the number of lag
terms to be included in the AR is known.

Figure 2: a general flow chart of genetic algorithm.

Consider a system as follows:
it + L] =aylt] +aylt - T+-+ay, y[t — MI)]
bult]+bult — T 1+ -+b,ult — NT ]
chlTl+cenlt =T J+-+c,nlt — LT ] 2)
where y[7], u[f] are the output and input of the system respectively; #[¢] is a white Gaussian noise with zero
mean and unit variance and there is no correlation between #z[r] and the observed output. The unknown

system coefficients are [ay a;...ay by b; by ¢y c;... ¢;] and T is the sampling time.
In shorthand notation, the model (1) can be written as:

A(g" W11 = B(g " yulf] + Clg /1] 3)
where A(q™), B(q™), C(q") are polynomials of the unit delay operator q* .

Assume that the approximation, } (t), the observed values of y[¢] and [¢], and the statistical parameters of
n[f] are all known, then a performance measure J for the system to be identified is defined as follows:



T=[" 6l + 11-a 10 -alt - T1-—a, 5l - M)
-bult]-bult — T ]—-—bult— NI ]
-ca[T]—cnlt — T} —c,nlt— LT] ) dt ()]

The objective is to choose [ag a;...ay by by...by ¢ €1...c1] so that J is minimized
The ideal value for J would, of course, be zero

It is known that pole and zero based identification may be more robust when zeros are included, because
modeling errors are more sensitive to changes in system poles than zeros. Moreover, determining the
searching ranges for the pole and zeros may be difficult if the system is unstable or non-minimum phase.
Therefore, identification is often carried out on the coefficients of the transfer function, instead of pole and
zeros positions [6].

A simulation of the identification of a linear system was carried on a linear discrete-time system. The
observed outputs of the system were generated by the difference equation (5).
Y[k1=159[k —1]-0.7y[k — 2] +
ulk — 5]+ 05ulk — 6]+
nlk]—-nlk —1]+02n[k - 2] 5)
where the input signal u[k] = [1.1]* and n[k] was a Gaussian white noise with zero mean and unit variance.
The model system, whose parameters were identified, was in the form
yIkl=aylk —1]+a,y[k - 2]+
bulk — 5]+ bulk — 6]+
cnlk]+cnlk =11+ c;nlk — 2] 6)

The performance measure for the model system was defined as in (4):

T=Y (Plkl-aylk —1]-a,y[k - 2]

~ bk — 51— bulk — 6]
— e[k~ e[k — 1] — eyn[k — 2])° 7)

where W =200 is the window size for the signals.

The objective now was to optimally find [a; a; b; b; ¢; ¢; ¢;] in the difference equation (6) such that J was
minimized. An initial population of 500 models was generated randomly. Each model consisted of seven
parameters uniformly distributed over the range of [-2, 2]. Each offspring was created uniformly by
applying the crossover operator with probability of 0.7 angi the mutation operator with the probability of 0.4
on the parents. The performance or fitness score for each model was defined in terms of the mean square
error between the output of the target system and the output of the model as in equation (7). The selection
scheme was applied as followed: 20% of the highest fitness scores of the current population survived to the
next generation and the remaining 80% of the current population was replaced by newly created offspring.
This process was iterated for 600 generations.

To show that the method is robust to a variety of inputs, the simulation was carried out with different
inputs. Figure 3 indicates the error performance of the best model in each generation through the entire



evolutionary-optimization process. Figure 3a) associates with input u[k] = (1.1)* and figure 3b) associates
with input u[k] = tanh(k). There was a rapid improvement of the best fitness score from one generation to
the next generation at the beginning of the processes.
rapidly. However, with different inputs, the parameters obtained in the two cases are slightly different.
The final best-evolved model after 600 generations with u(k) = (1.1)* was [1.484 —0.6867 0.1606 1.2856
971 -7899 .0193], and the associated error was 6.4167e-2. The best evolved model with u(k) = tanh(k)
was [1.467 0.6577 1.5904 —0.0813 0.8535 -.6479 —0.746], and the associated error was 8.827e-2.

In both cases, the processes converged to zero

The sequence #(f) was chosen as a Gaussian white noise in order for our model to be a good fit to a variety
of input data sets. However, its statistical properties were not used in the optimization process.

200 -
180
160 -
140 -
120
100 -
80 -
60 -
40 -
20 -

59
117
175
233
291
349
407
465
523
581

a)

Figure 3: a) error performance curve with the input u[k] = (1.1)*
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Figure 4: plot of the target system response and its estimated

model response by GA.

a)  the input to the system u[k] = tanh[k],
b)  the Gaussian white noise
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b) error performance curve with the input u[k] = tanh(k)
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Figure 5: plot of the target system response and its estimated
model response by GA.

a) the input to the system u[k] = (1.1,

b) the Gaussian white noise

c)  target system response, d) estimated system response

For comparison with the GA identification technique, the recursive least mean squares method was applied
to the same set of data and the best LMS parameter set was found to be [1.502 —0.699 1.000 0.5001 1.001 —
1.000 0.200], and the associated error was 7.02e-5. The mean square error of the best-estimated model



from the LMS method is significantly less than the error obtained by GA. This result of the LMS method
outperforming the GA method is not surprising because from the calculus point of view LMS is the
optimum solution for estimating linear systems when the LMS performance measure is used. However,
because of numerical problems, the convergence process of the LMS was not stable. In other words, the
convergence sequence was not monotonic even for a small number of parameters. As the number of
parameters of a model increases, the computational complexity of the LMS method increases rapidly due to
matrix multiplication and inversion, while the complexity of the GA is affected very little, since the extra
parameters affect only the encoded string which involves very little in the computational process of the
algorithm. This is the most important advantage of GA over LMS. Another advantage of GA is that it is
much easier to adapt the algorithm to a non-quadratic optimal criterion such as |e|, e*, etc.
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Figure 6: plot of the target system response and its estimated model response by LMS.
a)  is the input to the system u[k] = tanh[k], b) is the Gaussian white noise
c) target system response, d)Estimated system response

4. Nonlinear systems

In this section, the GA is applied to identify a non-linear system. The simulation was carried out on a
system that is similar to that which was used in the linear example. However, in this case, the output was
observed after it had passed through a non-linear block as in the following diagram.

n(t)
u(t) RS () +(9) ()
— ¥ _
glite P (0)+(9)
/

In particular, the following is the nonlinear system model of the system to be identified



x[k]=ax[k - 1]+ a,x[k - 2]+

bulk - 5]+ bulk — 6]+

cnlk]—c,nlk — 1]+ c;nlk — 2] (8)
y[k]= x"[k]+x[k] ©)

The identification task here is to estimate the parameter set [a; a; b; b, ¢; ¢, c3] optimally given that the
observed values J[k], and the state values up to k-1 are available. In this simulation, the x[k] are
generated by equation (5) and P[k]are generated by equation (9). The input u(k) is (0.9), and n(k) is
again a Gaussian white noise with zero mean and unit variance. Since y[] is a nonlinear function of x[k],
it is not possible to directly use a conventional identification technique such as LMS to estimate the system

parameters; therefore, the GA based identification method is applied here. Again we defined the
performance measure for the model system as follow:

L

1= (lk]- x’[k]- x[k])* (10)

k=1
Using equation (8), J can be rewritten as,

J= i {(J1k] - (ax[k = 1]+ a,x[k — 2]+ bulk — 5]+ b,uk — 6]

+ k] +cnlk — 1]+ cn[k - 2])°
—(ax[k — 1]+ a,x[k — 2]+ bulk — 5]+ b,ul k — 6]
+enlk]+ cplk — 1]+ cnlk —2])} (1)

As in the linear case, an initial population of 500 models was generated. Each parameter in the model was
uniformly distributed in the range of [-2 2]. An offspring was created with the mutation rate of 0.3 and the
crossover rate was 0.8. The performance measure was again used as the fitness score for each model. The
selection process is stricter as compared to the linear case. Here, only the top 7% of the population was
advanced to the next generation, and the rest of the population in the next generation were newly created
through the genetic operators. The optimization process evolved for 600 generations. Figure 7 shows the
convergence trend of the best model in each generation. The curve converges relatively slowly compared
to the linear case. The best model that the GA found after evolving in 600 generations was [1.3332 —
0.6097 1.8099 0.3028 0.7970 —0.5731 —0.0528] with the associated error of 7.51e-1. Figure 8 shows the
plots of input and output of the target system as well as for the estimated system.
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Figure 7: plot of errors during the evolutionary process Figure 8: plot of the target system response and its estimated
for a nonlinear system case. model response by GA.

a)  the input to the system u[k] = (0.99),

b)  the Gaussian white noise

¢)  target system response, d) estimated system response

For comparison, a calculus-based method was used to identify the model system using the same data set.
Consider the system performance measure J, equation (11), as a multivariate function of [a; a, b byc; ¢
¢s], the minimum value of J can be found by solving a system of first order derivative equations for J.

a
=0
al
(12)
A
Z -0
c

Solving the system of nonlinear equations (12) by Newton’s method, we obtained the solution for the
model as [1.5 -0.7 0.747 0.75 1 —1 .2], and the associated error 4.23 e-2. The error obtained by calculus-
based is relatively better than the etrror obtained by GA but there is a trade off as follow: the convergence
of the Newton’s method depended solely on the supplied initial solution, which was selected by trial and
error. For most of the trials for the initial solution, the Newton method failed to converge. The selection of
the initial solution was a time consuming process.

5. Conclusions :

In this paper, we have addressed the application of the Genetic Algorithm method to the problem of system
identification. As a part of the study, the GA identification method was compared the minimum mean
square identification method. Our simulation indicates that for identifying linear systems, the LSM method
provides a more accurate solution than the GA method@;-}H‘owever, because of the complexity and slow
convergence, particularly for large order systems, of the LSM method, the GA method has advantages over
the LSM both in being less complex and in having a faster convergence time. For large, nonlinear systems,
the GA identification method has computational advantages over the nonlinear mean square method
because it does not require derivative information on the performance index, which usually involves heavy
computation, and the GA can be used to identify a system using a variety of objective functions not just for
quadratic criteria.

The GA was applied to linear and nonlinear systems both of which included white noises as inputs. The
results showed that the GA worked very well in both cases. The error performance curves indicate that the
method converges rapidly. However, during the simulation, we did find that, the convergence of the
process is highly sensitive to the GA parameters such at population size, mutation and crossover
probabilities, and also to the percentages of the selection process. To overcome this sensitivity, the authors
are working to include some of those factors as design parameters. In other word, the GA parameters will
be encoded in the individual string and be optimized by the evolutionary process as well. The authors are
now studying this change.
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